Strain-dependent internal parameters in hyperelastic biological materials
نویسندگان
چکیده
منابع مشابه
On the modeling of internal parameters in hyperelastic biological materials
This paper concerns the behavior of hyperelastic energies depending on an internal parameter. First, the situation in which the internal parameter is a function of the gradient of the deformation is presented. Second, two models where the parameter describes the activation of skeletal muscle tissue are analyzed. In those models, the activation parameter depends on the strain and it is important...
متن کاملAnalysis of strain localization in strain-softening hyperelastic materials, using assumed stress hybrid elements
Newly developed assumed stress finite elements, based on a mixed variational principle which includes unsymmetric stress, rotation (drilling degrees of freedom), pressure, and displacement as variables, are presented. The elements are capable of handling geometrically nonlinear as well as materially nonlinear two dimensional problems, with and without volume constraints. As an application of th...
متن کاملModelling Anisotropic, Hyperelastic Materials in ABAQUS
ABAQUS offers the possibility to model non-linear isotropic materials as well as linear anisotropic materials. However, it is not possible to use these two capabilities at the same time in order to model anisotropic hyperelastic materials. Gurvich proposed to model such materials by means of the linear superposition of two fictitious materials: a linear anisotropic, and a hyperelastic isotropic...
متن کاملTowards Real-time Simulation of Hyperelastic Materials
We present a new method for real-time physics-based simulation supporting many different types of hyperelastic materials. Previous methods such as Position Based or Projective Dynamics are fast, but support only limited selection of materials; even classical materials such as the Neo-Hookean elasticity are not supported. Recently, Xu et al. [2015] introduced new “spline-based materials” which c...
متن کاملConstitutive modelling of hyperelastic rubber-like materials
The simulation of rubber-like material behaviour by means of the finite element method has been described in this study. Proper material models were selected for the numerical description of static hyper-elasticity. The combinations of a continuum damage mechanics concept and a pseudo-elastic concept with Gao’s elastic law were used to simulate the ideal Mullins effect. Furthermore, a specific ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Non-Linear Mechanics
سال: 2017
ISSN: 0020-7462
DOI: 10.1016/j.ijnonlinmec.2017.06.012